A Modified Levenberg-Marquardt Method for Nonsmooth Equations with Finitely Many Maximum Functions

نویسندگان

  • Shou-qiang Du
  • Yan Gao
  • Shijun Liao
چکیده

For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants are of particular importance because of their locally fast convergent rates. Finitely manymaximum functions systems are very useful in the study of nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and many problems in mechanics and engineering. In this paper, we present a modified LevenbergMarquardt method for nonsmooth equations with finitely many maximum functions. Under mild assumptions, the present method is shown to be convergent Q-linearly. Some numerical results comparing the proposed method with classical reformulations indicate that the modified Levenberg-Marquardt algorithm works quite well in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsmooth Levenberg-Marquardt Type Method for Solving a Class of Stochastic Linear Complementarity Problems with Finitely Many Elements

Abstract: Our purpose of this paper is to solve a class of stochastic linear complementarity problems (SLCP) with finitely many elements. Based on a new stochastic linear complementarity problem function, a new semi-smooth least squares reformulation of the stochastic linear complementarity problem is introduced. For solving the semi-smooth least squares reformulation, we propose a feasible non...

متن کامل

Levenberg-Marquardt Method for the Eigenvalue Complementarity Problem

The eigenvalue complementarity problem (EiCP) is a kind of very useful model, which is widely used in the study of many problems in mechanics, engineering, and economics. The EiCP was shown to be equivalent to a special nonlinear complementarity problem or a mathematical programming problem with complementarity constraints. The existing methods for solving the EiCP are all nonsmooth methods, in...

متن کامل

A Parameter-self-adjusting Levenberg-marquardt Method for Solving Nonsmooth Equations

A parameter-self-adjusting Levenberg-Marquardt method (PSA-LMM) is proposed for solving a nonlinear system of equations F (x) = 0, where F : R → R is a semismooth mapping. At each iteration, the LM parameter μk is automatically adjusted based on the ratio between actual reduction and predicted reduction. The global convergence of PSALMM for solving semismooth equations is demonstrated. Under th...

متن کامل

Global Complexity Bound Analysis of the Levenberg-Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem

We investigate a global complexity bound of the Levenberg-Marquardt Method (LMM) for nonsmooth equations F (x) = 0. The global complexity bound is an upper bound to the number of iterations required to get an approximate solution such that ∥∇f(x)∥ ≤ ε, where f is a least square merit function and ε is a given positive constant. We show that the bound of the LMM is O(ε−2). We also show that it i...

متن کامل

On Levenberg-marquardt-kaczmarz Iterative Methods for Solving Systems of Nonlinear Ill-posed Equations

In this article a modified Levenberg-Marquardt method coupled with a Kaczmarz strategy for obtaining stable solutions of nonlinear systems of ill-posed operator equations is investigated. We show that the proposed method is a convergent regularization method. Numerical tests are presented for a non-linear inverse doping problem based on a bipolar model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009